Visualization
groot.visualization
plot_adversary(X, y, adversary, ax=None)
Plot the decision tree and samples for a 2D dataset using the adversary. Uses matplotlib.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
array-like of shape (n_samples, n_features) |
Feature values. |
required |
y |
array-like of shape (n_samples,) |
Class labels as integers 0 and 1. |
required |
adversary |
groot.adversary.DecisionTreeAdversary |
Adversary for this decision tree. |
required |
ax |
matplotlib.axes.Axes |
Axes object to plot on. |
None |
plot_estimator(X, y, estimator, ax=None, steps=100, colors=('b', 'r'))
Plot a scikit-learn estimator and samples for a 2D dataset. Uses matplotlib.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
array-like of shape (n_samples, n_features) |
Feature values. |
required |
y |
array-like of shape (n_samples,) |
Ground truth targets. |
required |
estimator |
Scikit-learn compatible estimator |
Estimator to visualize |
required |
ax |
matplotlib.axes.Axes |
Axes object to plot on. |
None |